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Previous lecture

Lambda Logical Forms (LLFs):

Simply typed λ-terms with e and t basic types;
No logical constants, only lexical terms and
λ-abstraction;

Similar to syntactic trees of natural language
expressions.

Natural tableau system:

Tableau entries: LLF : argumentList︸ ︷︷ ︸
Binary format of a term

: truthSign

Monotonicity reasoning achieved with special
monotonicity rules
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Closed natural tableau
1 every(et)(et)t (who(et)(et)et moveet personet) smirket : [] :T

2 each(et)(et)t (who danceet manet) smileet : [] : F

3 smirk : [b] :T
4 smile : [b] : F

7 ×

5 every (who move person) : [smile] :T
6 each (who dance man) : [smile] : F

8 who dance man : [c] :T
9 who move person : [c] : F

13 dance : [c] :T
14 man : [c] :T

15 move : [c] : F

17 ×

16 person : [c] : F

18 ×

10 every : [who dance man,smile] :T
11 each : [who dance man,smile] : F

12 ×

×v[3,4]

∧T[8]

×v[13,15] ×v[14,16]

×v[10,11]

↑v[1,2]

↓v[5,6]

∧F[9]
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Today's lecture

A natural tableau theorem prover:

LangPro

CCG parser

C&C

EasyCCG

LLFgen

Tree to term
Fixing terms

Type-raising
Aligner

NLogPro

Signature

Proof engine (PE)

Inventory of rules (IR)

Knowledge base (KB)

CCG
derivations LLFs

Solving natural language inference problems with the
prover
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LLFs and Categorial Grammar

LLFs are similar to formal derivations studied in
Categorial Grammars (CGs) [Ajdukiewicz, 1935, Hillel, 1953].

CGs treat each lexical item as a function;
Categorial Type-Transparency principle links
syntactic types to semantic ones.

Combinatory Categorial Grammar (CCG) [Steedman, 2000]

is the only CG that is scaled up for wide-coverage text
processing:

CCG is well-studied from linguistic perspectives;
There exists robust and accurate wide-coverage
parsers for CCG, e.g., C&C parser
[Clark and Curran, 2007] and EasyCCG
[Lewis and Steedman, 2014].
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From CCG Trees to LLFs

Producing an LLF from a CCG derivation consists of
several steps:

CCG Tree CCG Term Fixed CCG Term LLFs

FOL

DRT
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CCG Tree → CCG term

CCG Tree CCG Term Fixed CCG Term LLFs

FOL

DRT

fa[Y ]

A
X

F
Y/X

ba[Y ]

F
Y \X

A
X

⇒
@[y]

A
x

F
(x,y)

fc[Z/X ]

A
Y/X

F
Z/Y

bc[Z\X ]

F
Z\Y

A
Y \X

⇒
λ[(x,z)]

@[z]

@[y]

v
x

A
(x,y)

F
(y,z)

v
x
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CCG term → �xed CCG term

CCG Tree CCG Term Fixed CCG Term LLFs

FOL

DRT

[DowPERn,n Jones
PER
n ]np Dow_Jonesnp

nobodynp non,np personn

[icen]np an,np icen

[twon,n dogsn]np twon,np dogsn
[workingnp,s]n,n who(np,s),n,nworking
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�xed CCG term → LLFs

Every man who ate a burger died

dievp
(
everyn,np

(
whovp,n,n (eatnp,vp (an,np burgern)) mann

))
;

EVERYn,vp,s
(
who

(
λx.An,vp,s burger (λy.eat ynp xnp)

)
man

)
die

An,vp,s burger
(
λy.EVERYn,vp,s

(
who (λx.eat ynp xnp)man

)
die

)
(a)

s

1
np

die
vp

(b)

1
np

n

man
n

n,n

2
vp

who
vp,n,n

every
n,np

(c)

2
vp

3
np

ate
np,vp

(d)

3
np

burger
n

a
n,np
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LLFgen (example)
ba[S]

fa[S\NP]

fa[NP]

ba[N]

lx[N\N ,S\NP]

fa[S\NP]

lx[NP]

tomatoes

N
tomato
NNS

cutting

(S\NP)/NP
cut
VBG

one

N
one
NN

no

NP/N
no
DT

is

(S\NP)/NP
be
VBZ

There

NP
there
EX

à
s

There

np

there
EX

np,s

np

n

person

n

person
NN

n,n

np,s

np

tomatoes

n

tomato
NN

s

n,np
s
DT

cutting

np,np,s
cut
VBG

who

(np,s),n,n
who
WDT

no

n,np
no
DT

is

np,np,s
be
VBZ

There is no one cutting tomatoes  
be(no(who(cut(s tomato))person))there
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LLFgen (example)
ba[S]

fa[S\NP]

fa[NP]

ba[N]

lx[N\N ,S\NP]

fa[S\NP]

lx[NP]

tomatoes

N
tomato
NNS

cutting

(S\NP)/NP
cut
VBG

one

N
one
NN

no

NP/N
no
DT

is

(S\NP)/NP
be
VBZ

There

NP
there
EX

à
s

There

np

there
EX

np,s

np

n

person

n

person
NN

n,n

np,s

np

tomatoes

n

tomato
NN

s

n,np
s
DT

cutting

np,np,s
cut
VBG

who

(np,s),n,n
who
WDT

no

n,np
no
DT

is

np,np,s
be
VBZ

be(no(who(cut(s tomato))person))there  
no

(
who (λx. s tomato (λy. cuty x)) person

)(
λz.be z there

)
s tomato

(
λy.no

(
who (cut y) person

)(
λz.be z there

))
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Uninformative et-based types

Semantic types based on e and t are uninformative from
a syntactic point of view:

het : [ce]
catet : [ce]
or

sleepet : [ce]

A(et)et Bet : [ce]
little(et)et birdet : [ce]
or

high(et)et flyet : [ce]

a(et)et(beetce) : [ce]
quietly(et)et (followeet johne) : [ce]
or

wife(et)et (ofeet johne) : [ce]
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Extending the type system

Add syntactic types to semantic ones:

{e, t}+ {np,s,n,pp}

A partial order subtyping relation (<:) serves as an
interface between syntactic and semantic types:

s<: t

e <: np

n<: et

pp<: et

(α1,α2) <: (β1,β2) i� β1 <:α1 and α2 <:β2
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Syntactic terms

An additional typing rule:

if A :α and α<:β, then A :β too.

Terms of multiple types:

catn is of type et

redn,n is of type (n,et) and (et,et)

seenp,np,s is of type np(np, t), eet, . . .

Syntactic and semantic terms together:

catnce, lovenp,np,sjohnnpce, onppde
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e(et)
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No much changes in tableau proofs

Only the style of the terms is changed

1 every prover (quickly halt) : [] :T

2 most (tableau prover)terminate : [] : F

mon↑[1,2]

3 quickly halt : [c] :T

4 terminate : [c] : F

7 halt : [c] :T

8 ×

5 every prover : [terminate] :T

6 most (tableau prover) : [terminate] : F

mon↓[5,6]

9 prover : [d] : F

10 tableau prover : [d] :T

13 prover : [d] :T

14 ×

11 every : [tableau prover,terminate] :T

12 most : [tableau prover,terminate] : F

15 ×

⊂[3]

×v[4,7]
⊂[10]

×v[9,13]

×v[11,12]
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Linguistic Rules

Linguistic rules, in contrast to the algebraic rules,
account for a certain syntactic constructions.

We will also include the rules that remedy errors
introduced in the syntactic derivation trees.

Most of the linguistic rules are collected in a data-driven
fashion:

NLI problems
Prove

Adapt manually

CCG parser
+

LLFgen
+

SG, KB, IR, PE
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Rules for prepositions

PP@NT

pIN
np,n,nd N : [c] :T

N : [c] :T
pnp,pp : [d,c] :T

withnp,n,n ge bicyclen : [ce] :T

bicycle : [c] :T

withnp,pp : [g,c] :T

PP@NF

pIN
np,n,nd N : [c] : F

N : [c] : F pnp,pp : [g,c] : F

withnp,n,n ge bicyclen : [ce] : F

bicycle : [c] : F withnp,pp : [g,c] : F
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Treating PP attachment

SICK-9069 GOLD: entailment BY: C&C
Two boys are

[
[layingVP [in the ocean]VP\VP] [close to the beach]VP\VP

]
Two boys are

[
[layingVP/PP [in the water]PP] [close to the beach]VP\VP

]
V@PP

Vpp,α (pIN
np,ppD) : [

#–
C ] :X

pIN
np,α,αDVα : [

#–
C ] :X

α= (np∗,vp)

liepp,vp (innp,pp oe) : [c] : F

innp,vp,vp oe lievp : [c] : F
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Treating PP attachment (II)

SICK-340 GOLD: entailment BY: C&C[
schoolgirlN/PP [with a black bag]PP

]
is on a crowded train[

girlN [with a black bag]N\N
]
is on a crowded train

N@PPT

Npp,n Ppp : [ce] :T

Nn : [c] :T
P : [c] :T

N@PPF

Npp,n Ppp : [ce] : F

Nn : [c] : F P : [c] : F

1 schoolgirlpp,n (withnp,pp be) : [ge] :T

2 withnp,n,n b girln : [g] : F

3 schoolgirln : [g] :T

4 withnp,pp : [b,g] :T

5 girl : [g] : F

7 ×

6 withnp,pp : [b,g] : F

8 ×

N@PPT[1]

×v[3,5] ×v[4,6]

N@PPF[2]
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Expletive there

1 somen,vp,sdogn (bevp,vp runvp) : [] :T

2 somen,vp,s (thatvp,n,nmovevpanimaln)(λx.benp,vpx therenpthr
) : [] : F

3 dog : [ce] :T

4 berun : [ce] :T

5 run : [c] :T

6 that move animal : [c] : F

11 move : [c] : F

13 ×

12 animal : [c] : F

14 ×

7 be c there : [] : F

9 be : [c,there] : F

10 ×

∃T[1]

aux[4]

×v[5,11] ×v[3,12]

A>,A>[7]

×THR[9]

λ<,∃F[2]

∧F[6]

×THR

benp,vp : [C,D] : F

×
therenpthr

∈ {C,D}
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Other closure rules

Open compound nouns:
×CPN

Nn : [d] :T

Hpp,n(prp d) : [c] :X

An,n Hn : [c] :X

×
N ≈ A or N ≈d A

protectionn : [de] :T
gearpp,n(fornp,pp de) : [ce] : F
protectiven,n gearn : [ce] :T

×
(×CPN∗ )

Light verb constructions:
×LVC

l #–α ,vp : [c,
#–
D] :X

un : [c] :T
v #–α ,s : [D] :X

×
l ∈ {do,get,give,have,make,take},
#–α is formed by np and pp, and u ≈d v

donp,vp : [de,he] :T
dancen : [de] :T
dancevp : [he] : F

×
(×LVC∗ )
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Natural logic theorem prover (NLogPro)
NLogPro

Signature

Proof engine (PE)

Inventory of rules (IR)

Knowledge base (KB)

Lexicon
most : (n,vp,s)
every : (n,vp,s)
red
know

Properties
[;; {↑}]
[{↓}; {↑}]
[{∩}]
[{++,−+}]

WordNet [Miller, 1995]

Annotation

KB uses 4 relations from WordNet 3.0:
derivation
similarity
hyponymy/hypernymy
antonymy

o No word sense disambiguation system is used.
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Two data structures

The proof engine builds both a tree and a list structures:
1

6

7

98

open

2

4

5

×
Rule[Nodes]

3

×
Rule[Nodes]

Br1 : 〈History1, Entities1〉 1 2 3

Br2 : 〈History2, Entities2〉 1 2 4 5

Br3 : 〈History3, Entities3〉1 6 7 8

Br4 : 〈History4, Entities4〉 1 6 7 9
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Natural language theorem prover

Chaining a CCG parser, the LLF generator and NLogPro
results in a theorem prover for natural language.

LangPro

CCG parser

C&C

EasyCCG

LLFgen

Tree to term

Fixing terms

Type-raising
Aligner

NLogPro

Signature

Proof engine (PE)

Inventory of rules (IR)

Knowledge base (KB)

CCG
derivations LLFs

Online demo at: http://naturallogic.pro
git clone: https://github.com/kovvalsky/LangPro

Lasha Abzianidze Lecture 3: Natural language inference with a natural theorem prover 23 / 49

http://naturallogic.pro
https://github.com/kovvalsky/LangPro


Intro Generate LLFs Syntactic types Linguistic Rules LangPro NLI datasets Learning Evaluation Conclusion

LangPro in action
SICK-2865: Nobody is riding a bike =⇒? Two people are riding a bike

the C&C parser the C&C parser

ba[sdcl]

fa[sdcl\np]

fa[sng\np]

fa[np]

bike

n
bike

NN

a

np/n
a

DT

riding

(sng\np)/np
ride

VBG

is

(sdcl\np)/(sng\np)
be

VBZ

Nobody

np
nobody

DT

ba[sdcl]

fa[sdcl\np]

fa[sng\np]

fa[np]

bike

n
bike

NN

a

np/n
a

DT

riding

(sng \np)/np
ride

VBG

are

(sdcl\np)/(sng\np)
be

VBP

lx[np,n]

fa[n]

people

n
people

NNS

Two

n/n
two

CD

Fixing Fixing

sdcl

np

person

n
person

NN

no

n,np
no

DT

np,sdcl

np,sng

np

bike

n
bike

NN

a

n,np
a

DT

riding

np,np,sng
ride

VBG

is

(np,sng ),np,sdcl
be

VBZ

sdcl

np

person

n
person

NN

Two

n,np
two

CD

np,sdcl

np,sng

np

bike

n
bike

NN

a

n,np
a

DT

riding

np,np,sng
ride

VBG

are

(np,sng ),np,sdcl
be

VBP
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LangPro in action (2)

sdcl

np

person

n
person

NN

no

n,np
no

DT

np,sdcl

np,sng

np

bike

n
bike

NN

a

n,np
a

DT

riding

np,np,sng
ride

VBG

is

(np,sng ),np,sdcl
be

VBZ

sdcl

np

person

n
person

NN

Two

n,np
two

CD

np,sdcl

np,sng

np

bike

n
bike

NN

a

n,np
a

DT

riding

np,np,sng
ride

VBG

are

(np,sng ),np,sdcl
be

VBP

Type-raising Type-raising

no person
(
be (λx. (a bike) (λy. ride y x))

)
a bike

(
λx. no person (be (ride x))

) two person
(
be (λx. (a bike) (λy. ride y x))

)
a bike

(
λx. two person (be (ride x))

)
Proving by PE using IR & KB

intial nodes for entailment checking:

no person
(
be (λx. (a bike) (λy. ride y x))

)
: [ ] :T

two person
(
be (λx. (a bike) (λy. ride y x))

)
: [ ] : F

intial nodes for contradiction checking:

no person
(
be (λx. (a bike) (λy. ride y x))

)
: [ ] :T

two person
(
be (λx. (a bike) (λy. ride y x))

)
: [ ] :T

Lasha Abzianidze Lecture 3: Natural language inference with a natural theorem prover 25 / 49



Intro Generate LLFs Syntactic types Linguistic Rules LangPro NLI datasets Learning Evaluation Conclusion

LangPro in action (3)

1 no person
(
be(λx. (a bike) (λy. ride y x))

)
: [ ] :T

2 two person
(
be (λx. (a bike) (λy. ride y x))

)
: [ ] :T

3 person: [c] :T

4 be(λx. (a bike) (λy. ride y x)): [c] :T

5 person: [c] : F

6 ×

∃T[2]

non
T
[1,4]

no A B : [] :T
A : [c] :T

B : [c] : F
non

T

NCD A B : [] :T

A : [c] :T
B : [c] :T

∃T
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The SICK dataset

SICK [Marelli et al., 2014b] contains Sentences Involving
Compositional Knowledge:

10K Text-Hypothesis pairs annotated by humans
with three labels: E, C, & N.

Contains no encyclopedic knowledge, no named
entities, relatively small vocabulary, less multiword
expressions and no lengthy sentences (�9 words per
sentence).

SemEval-14 RTE benchmark [Marelli et al., 2014a]

84% of crowd workers' labels match the majority,
i.e, gold labels.

Lasha Abzianidze Lecture 3: Natural language inference with a natural theorem prover 27 / 49



Intro Generate LLFs Syntactic types Linguistic Rules LangPro NLI datasets Learning Evaluation Conclusion

SICK construction
Original pair

S0a: A sea turtle is hunting for �sh S0b: The turtle followed the �sh
Normalized pair

S1a: A sea turtle is hunting for �sh S1b: The turtle is following the �sh
Expanded pair

Similar meaning

S2a: A sea turtle is hunting for food S2b: The turtle is following the red �sh
Logically contradictory or at least highly contrasting meaning

S3a: A sea turtle is not hunting for �sh S3b: The turtle isn't following the �sh
Lexically similar but di�erent meaning

S4a: A �sh is hunting for a turtle in the sea S4b: The �sh is following the turtle

Normalized sentence pairs Score Label
S1a: A sea turtle is hunting for �sh S2a: A sea turtle is hunting for food 4.5 E
S3a: A sea turtle is not hunting for �sh S1a: A sea turtle is hunting for �sh 3.4 C
S4a: A �sh is hunting for a turtle in the sea S1a: A sea turtle is hunting for �sh 3.9 N
S2b: The turtle is following the red �sh S1b: The turtle is following the �sh 4.6 E
S1b: The turtle is following the �sh S3b: The turtle isn't following the �sh 4 C
S1b: The turtle is following the �sh S4b: The �sh is following the turtle 3.8 C
S1a: A sea turtle is hunting for �sh S2b: The turtle is following the red �sh 4 N
S1a: A sea turtle is hunting for �sh S3b: The turtle isn't following the �sh 3.2 N
S4b: The �sh is following the turtle S1a: A sea turtle is hunting for �sh 3.2 N
S1b: The turtle is following the �sh S2a: A sea turtle is hunting for food 3.9 N
S1b: The turtle is following the �sh S3a: A sea turtle is not hunting for �sh 3.4 N
S4a: A �sh is hunting for a turtle in the sea S1b: The turtle is following the �sh 3.5 N
S1a: A sea turtle is hunting for �sh S1b: The turtle is following the �sh 3.8 N
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SICK examples and stats

SICK-1241 GOLD: neutral
A woman is dancing and singing with other women
A woman is dancing and singing in the rain

SICK-341 GOLD: contradiction
There is no girl with a black bag on a crowded train
A girl with a black bag is on a crowded train

SICK-8381 GOLD: entailment
The young girl in blue is having fun on a slide
The young girl in blue is enjoying a slide
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The FraCaS dataset

The FraCaS test suite [Cooper et al., 1996]:

Contains 346 problems (45% multi-premised)

Covers GQs, plurals, anaphora, ellipsis, adjectives,
comparatives, temporal reference, verbs and
attitudes.

Three-way annotated by the authors of the dataset.

Requires almost no lexical or world knowledge

The NLI dataset derived from FraCaS
[MacCartney and Manning, 2007].
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FraCaS NLI problems

FraCaS-26 GOLD: entailment
Most Europeans are resident in Europe
All Europeans are people
All people who are resident in Europe can travel freely within Europe
Most Europeans can travel freely within Europe

FraCaS-61 GOLD: undefined
Both female commissioners used to be in business.
Both commissioners used to be in business.

FraCaS-171 GOLD: entailment
John wants to know how many men work part time.
And women.
John wants to know how many women work part time.
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Learning phase

The prover LangPro is (semi-automatically) trained on
the NLI datasets [Abzianidze, 2016a].

Adaptation:

NLI problems
Prove

Adapt manually

CCG parser
+

LLFgen
+

SG, KB, IR, PE

Used datasets: SICK-trial and FraCaS

Development:
Finding optimal values for certain parameters of the
prover based on its performance on SICK-train
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Adaptation

The problems that were solved by upgrading one of the
components of the prover:

Treat few as ↓ in its 1st arg (absolute reading):
FraCaS-76 GOLD: entailment
Few committee members are from southern Europe
Few female committee members are from southern Europe

Introduce �tv apply and foodvmeal:
SICK-4734 GOLD: entailment
A man is �tting a silencer to a pistol
A man is applying a silencer to a gun

SICK-5110 GOLD: entailment
A chef is preparing some food
A chef is preparing a meal
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Development phase

Optimal values are searched for:

The number of word senses to consider;

The max number of rule application limit (RAL);

Whether to use a term aligner:
Weak aligner aligns everything but terms of type np:
SICK-727 GOLD: contradiction
The man in a grey t-shirt is sitting on a rock in front of the waterfall
There is no man in a grey t-shirt sitting on a rock in front of the waterfall

Strong aligner aligns everything but terms of type
terms of type np with ↓arg.
SICK-423 GOLD: contradiction
Two men are not holding �shing poles
Two men are holding �shing poles
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Greedy search for optimal parameters

Acc% Prec%Rec% Sense E�ciency criterion Aligner RAL Parser

75.09 98.5 43.6 1 [nonP,nonB,equi,nonC] No 200 C&C
76.42 98.3 46.8 1-5 - - - -
76.89 97.8 48.1 All - - - -
78.44 97.9 51.7 - [equi,nonB,nonP,nonC] - - -
79.33 97.9 53.8 - - Weak - -
81.5 97.7 59.0 - - Strong - -
81.53 97.7 59.1 - - Strong 400 -
81.38 98.0 58.5 - - Strong 400 EasyCCG
82.6 97.7 61.6 - - Strong 400 Both

The results are given on the SICK-train problems.
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E�cient and optimal RAL

# 10 20 30 50 100 400 1600
%
49
52
55
58

77.5
79.5
81.5

97.5
98

98.5

Sec/100p1.4 1.9 2.5 3.5 5.3 16 384

Accuracy

Recall

Precision

The results are given on the SICK-train problems.
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Solving FraCaS [Abzianidze, 2016b]

LangPro with C&C
Gold\ccLP yes no unk

yes 51 0 19 + 4
no 1 14 2
unk 1 0 44 + 6
P = .97, R = .71, Acc = .81

+

LangPro with EasyCCG
Gold\easyLP yes no unk

yes 52 0 22
no 1 12 4
unk 2 0 49
P = .96, R = .70, Acc = .80

=

=

LangPro
Gold\LP yes no unk

yes 60 0 14
no 1 14 2
unk 2 0 49
P = .96, R = .81, Acc = .87

FraCaS-109 GOLD: contradiction LP: entailment
Just one accountant attended the meeting
Some accountants attended the meeting
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Related work (FraCaS)

[MacCartney and Manning, 2008] and [Angeli and Manning, 2014] employ a
natural logic that is driven by sentence edits.

[Lewis and Steedman, 2013] employ Boxer-style [Bos et al., 2004]
translation into FOL, Prover9 and distributional relation clustering.

[Mineshima et al., 2015] also uses the Boxer-style translation but some
HOGQs are treated as higher-order terms. Their inference system is
implemented in the proof assistant Coq.

[Tian et al., 2014] and [Dong et al., 2014] uses abstract denotations
obtained from DCS trees [Liang et al., 2011]:

man⊂πsubj
(
read∩ (Wsubj×bookobj)

)
[Bernardy and Chatzikyriakidis, 2017] uses Grammatical Framework and
Coq. They use gold standard GF trees.
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Comparison on FraCaS

Sec (Sing/All)
Single-premised (Acc %) Overall (Acc %)

BL NL07,08 LS P/G NLI T14a,b M15 LP BL LS P/G T14a,b M15 LP

1 GQs (44/74) 45 84 98 70 89 95 80 93 82 93 50 62 85 80 95 78 95
2 Plur (24/33) 58 42 75 - 38 - 67 75 61 - - 67 73
5 Adj (15/22) 40 60 80 - 87 - 87 87 41 - - 68 77
9 Att (9/13) 67 56 89 - 22 - 78 100 62 - - 77 92

1,2,5,9 (92/142) 50 - 88 - - - 78 88 52 - - 74 87

NL07 [MacCartney and Manning, 2007], NL08 [MacCartney and Manning, 2008], NLI
[Angeli and Manning, 2014], LS [Lewis and Steedman, 2013],
M15 [Mineshima et al., 2015], T14a [Tian et al., 2014] and T14b [Dong et al., 2014]

Advantages of our approach over the related ones include:

Reasoning (with the semantic tableau) over multiple-premises;

Logical forms close to surface forms;

Underlying expressive high-order logic.
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Curing SICK [Abzianidze, 2015]

XXXXXXXXXX
Gold
SICK-test

LangPro
Ent Cont Neut

Entailment 805 0 609
Contradiction 2 482 236
Neutral 26 7 2760

P=97.4%, R=60.3%, Acc=82.14%

Mainly the usage of WordNet and noisy gold labels are blamed for false
proofs.

ID G/LP Premise Conclusion
1405 N/E A prawn is being cut by a woman A woman is cutting shrimps
4443 N/E A man is singing to a girl A man is singing to a woman
2870 N/C Two people are riding a motorcycle Nobody is riding a bike
8913 N/C A couple is not looking at a map A couple is looking at a map

363 C/C
P: A soccer ball is not rolling into a goal net
C: A soccer ball is rolling into a goal net
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False neutrals

Reason for false neutrals are knowledge sparsity (ca 50%), a lack of
rules (ca 25%), wrong labels and parsing mistakes.

ID G/LP Premise Conclusion
4974 E/N Someone is holding a hedgehog Someone is holding a small animal

6258 E/N
P: A policeman is sitting on a motorcycle
C: The cop is sitting on a police bike

4553 E/N
P: A man is emptying a container made of plastic
C: A man is emptying a plastic container

4720 E/N A monkey is practicing martial arts A chimp is practicing martial arts

6447 C/N
P:

[
A small boy [in a yellow shirt]

]
is laughing on the beach

C: There is no small boy
[
in a yellow shirt [laughing on the beach]

]
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Comparison on SICK

SemEval-14 systems Prec% Rec% Acc% (+LP) NWS%
Baseline (majority) - - 56.69 39.7
Illinois-LH 81.56 81.87 84.57 (+0.65) 72.8
ECNU 84.37 74.37 83.64 (+1.77) 72.7
UNAL-NLP 81.99 76.80 83.05 (+1.48) 71.2
SemantiKLUE 85.40 69.63 82.32 (+2.84) 71.5
The Meaning Factory 93.63 60.64 81.59 (+2.78) 73.0
UTexas (Prob-FOL) 97.87 38.71 73.23 (+9.44) 62.5
LangPro 97.35 60.31 82.14 74.8
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�Hard� problems

The problems from SICK-test that were proved correctly by both
ccLangPro and easyLangPro but failed by all the top �ve systems at the
SemEval-14 task.

ID G Text Hypothesis

247 C
T: The woman is not wearing glasses or a headdress
H: A woman is wearing an Egyptian headdress

406 E
T: A group of scouts are hiking through the grass
H: People are walking

2895 C The man isn't lifting weights The man is lifting barbells

3527 E
T: A person is jotting something with a pencil
H: A person is writing

3570 C The piece of paper is not being cut Paper is being cut with scissors

3608 N
T: A monkey is riding a bike
H: A bike is being ridden over a monkey

3806 E A man in a hat is playing a harp A man is playing an instrument
4479 E The boy is playing the piano The boy is playing a musical instrument
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Conclusion
Natural Tableau is a wide-coverage but still logic-based reasoning
system inspired by Natural Logic.

It represents a proof-theoretic approach to NLI.

Natural tableau was successfully scaled up for the NLI task:
CCG parser + LLFgen + theorem prover

Pros and cons of Natural Tableau:
4 Employs higher-order logic to model linguistic semantics;
4 Allows deep logical and shallow (e.g. monotonicity) reasoning;
4 Getting logical form is similar to syntactic parsing;
8 Heavily hinges on CCG parsing;
4 Proofs are highly reliable (≤ 3% false proofs);

8 Su�ers from multi-sense words;
8 No fully automated learning from data yet;
4 Its decision procedure is transparent and explanatory;
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Future work

There are really many directions for future work:

Explore di�erent types of RTE data, e.g., the newswire or human
generated data [Bowman et al., 2015];

Incorporate more knowledge in KB, e.g., paraphrase database
[Ganitkevitch et al., 2013].

Model di�erent phenomena: comparatives, anaphora, cardinals,
etc.

Pairing with distributional semantics: R(w1,w2,r) and weighted
closure branches;

Acquisition of lexical knowledge: abductive reasoning;

Generate LLFs from Universal Dependency trees
+ the Universal Semantic Tagging [Abzianidze and Bos, 2017]

→? Multilingual Natural Tableau
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