NLI datasets	Learning phase	Evaluation	Demo ○	Conclusion	References

A Natural Proof System for Natural Language NPS4NL-5: Natural Language Inference with Natural Theorem Prover

Lasha Abzianidze

Reinhard Muskens

/ university of
 groningen

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

ESSLLI 2019 in Rīga, Latvija

NLI datasets	Learning phase	Demo	Conclusion	

Today:

- Relevant NLI datasets: FraCaS SICK
- Learning phase: Adaptation Development
- Evaluation: FraCaS SICK
- Demo of LangPro
- Conclusion & future work

A (1) > (1)

э

Э

NLI datasets ●0000	Learning phase	Evaluation 0000000	Demo ○	Conclusion	References
The SICK of	dataset				

SICK [Marelli et al., 2014b] contains Sentences Involving Compositional Knowledge:

- 10K Text-Hypothesis pairs generated semi-automatically and annotated by humans with three labels: E, C, & N.
- Contains no encyclopedic knowledge, no named entities, relatively small vocabulary, less multiword expressions and no lengthy sentences (9 words per sentence).
- Contradictions (86%) rely too much on negative words and antonyms [Lai and Hockenmaier, 2014].
- A benchmark for the SemEval-14 RTE task [Marelli et al., 2014a]: Trial (5%), Train (45%), and test (50%).
- 84% of crowd workers' labels match the majority, i.e, gold labels.

NLI datasets 0●000	Learning phase Eva	aluation	Demo ○	Conclusion			
SICK co	nstruction						
		Original pair					
	S0a: A sea turtle is hunting for fish S0b: The turtle followed th						
Normalized pair							
	S1a: A sea turtle is hunting for fish S1b: The turtle is following the fish						
Expanded pair							
	Similar meaning						
	S2a: A sea turtle is hunting for foc	d S2b:	The turtle is f	ollowing the red fish			
	Logically contradicto	ory or at least highly c	ontrasting meaning	5			
	S3a: A sea turtle is not hunting for	r fish S3b:	The turtle isn	t following the fish			

Lexically similar but different meaning **S4a:** A fish is hunting for a turtle in the sea **S4b:** The fish is following the turtle

(日) (部) (注) (注) (注)

0000	Cocococo Cocococo	Demo	0000		000
SICK co	nstruction				
		Original pair			
	S0a: A sea turtle is hunting for fish	S0b: The turtle follow	ved the fish		
	No. S1a: A sea turtle is hunting for fish	ormalized pair S1b: The turtle is foll	owing the fish		
		xpanded pair			
	Si	milar meaning			
	S2a: A sea turtle is hunting for food	S2b: The turtle is foll	owing the red fish		
	Logically contradictory of S3a: A sea turtle is not hunting for fis	r at least highly contrasting meaning	following the fish		
	Lexically sim	ilar but different meaning	ionowing the hon		
	S4a: A fish is hunting for a turtle in the	he sea S4b: The fish is follow	ving the turtle		
	Normalized ser	tence pairs	Sco	ore	Label
S1a : A	sea turtle is hunting for fish	S2a: A sea turtle is huntir	ng for food 4.	.5	E
S3 a: A	sea turtle is not hunting for fish	S1a: A cas turtle is huntin			
C 4 4	Ũ	31a. A sea turtle is nuntil	ng for fish 3.	.4	С
54a: A	fish is hunting for a turtle in the sea	S1a: A sea turtle is huntir	ng for fish 3. ng for fish 3.	.4 .9	C N
S4a: A S2b: 7	fish is hunting for a turtle in the sea he turtle is following the red fish	S1a: A sea turtle is huntin S1a: A sea turtle is huntin S1b: The turtle is followin	ng for fish 3. ng for fish 3. ng the fish 4.	.4 .9 .6	C N E
S4a: A S2b: 7 S1b: 7	fish is hunting for a turtle in the sea he turtle is following the red fish he turtle is following the fish	S1a: A sea turtle is huntin S1a: A sea turtle is huntin S1b: The turtle is followin S3b: The turtle isn't follow	ng for fish 3. ng for fish 3. ng the fish 4. wing the fish 4	.4 .9 .6 4	C N E C
S4a: A S2b: 7 S1b: 7 S1b: 7	fish is hunting for a turtle in the sea he turtle is following the red fish he turtle is following the fish he turtle is following the fish	 S1a: A sea turble is huntin S1a: A sea turble is huntin S1b: The turble is following S3b: The turble isn't following S4b: The fish is following 	ng for fish 3. ng for fish 3. ng the fish 4. wing the fish 4 the turtle 3.	.4 .9 .6 4 .8	C N E C C
S4a: A S2b: 7 S1b: 7 S1b: 7 S1a: A	fish is hunting for a turtle in the sea he turtle is following the red fish he turtle is following the fish he turtle is following the fish sea turtle is hunting for fish	S1a: A sea turtle is huntin S1b: The turtle is followin S3b: The turtle is followin S4b: The fish is following S2b: The turtle is following	ng for fish 3. ng for fish 3. ng the fish 4. wing the fish 4. the turtle 3. ng the red fish 4.	.4 .9 .6 4 .8	C N E C C N
S4a: A S2b: 7 S1b: 7 S1b: 7 S1a: A S1a: A	fish is hunting for a turtle in the sea he turtle is following the red fish he turtle is following the fish he turtle is following the fish sea turtle is hunting for fish sea turtle is hunting for fish	S1a: A sea turtle is huntin S1b: The turtle is followin S3b: The turtle isn't follo S4b: The fish is following S2b: The turtle is following S3b: The turtle isn't follo	ang for fish 3. ang for fish 3. ang the fish 4. wing the fish 4. the turtle 3. ang the red fish 4. wing the fish 4. ying the red fish 4. wing the fish 3.	.4 .9 .6 4 .8 .2	C N E C C N N
S4a: A S2b: 7 S1b: 7 S1b: 7 S1a: A S1a: A S1a: A S4b: 7	fish is hunting for a turtle in the sea he turtle is following the red fish he turtle is following the fish he turtle is following the fish sea turtle is hunting for fish sea turtle is hunting for fish he fish is following the turtle	S1a: A sea turtle is huntin S1b: The turtle is followin S3b: The turtle is n't follo S4b: The fish is following S2b: The turtle is followin S3b: The turtle is followin S1a: A sea turtle is huntin	and for fish 3. and for fish 3. and fish 4. wing the fish 4. the turtle 3. and the red fish 4. wing the red fish 3. and for fish 3. and for fish 3. and for fish 3.	.4 .9 .6 4 .8 4 .2 .2	C N E C C N N N
S4a: A S2b: 7 S1b: 7 S1b: 7 S1a: A S1a: A S1a: 7 S1a: 7 S1a: 7 S1b: 7	fish is hunting for a turtle in the sea he turtle is following the red fish he turtle is following the fish he turtle is following the fish sea turtle is hunting for fish sea turtle is hunting for fish he fish is following the turtle he turtle is following the fish	Sta: A sea turtle is huntin Sta: A sea turtle is huntin Stb: The turtle is followin S3b: The turtle isn't follow S4b: The fish is following S2b: The turtle is followin S3b: The turtle is followin S1a: A sea turtle is huntin S2a: A sea turtle is huntin	ang for fish 3. ang for fish 3. g the fish 4. wing the fish 4. the turtle 3. g the red fish 4. wing the fish 3. wing the fish 3. g for fish 3. ng for fish 3. ng for food 3.	.4 .9 .6 4 .8 .2 .2 .9	C N E C C N N N
S4a: A S2b: 7 S1b: 7 S1b: 7 S1a: A S1a: A S1a: A S1a: 7 S1b: 7 S1b: 7	fish is hunting for a turtle in the sea he turtle is following the red fish he turtle is following the fish he turtle is following the fish sea turtle is hunting for fish he fish is following the turtle he turtle is following the fish he turtle is following the fish	Sta: A sea turtle is huntin Sta: A sea turtle is huntin Stb: The turtle is followin S3b: The turtle is following S4b: The fish is following S2b: The turtle is followin S3b: The turtle is followin S1a: A sea turtle is huntin S2a: A sea turtle is huntin S3a: A sea turtle is not hu	ag for fish 3. ag for fish 3. g the fish 4. wing the fish 4. the turtle 3. g the red fish 4. wing the fish 3. ing for fish 3. ing for fish 3. ing for food 3. unting for fish 3.	.4 .9 .6 4 .8 .2 .2 .9 .4	C N C C N N N N N
S4a: A S2b: 7 S1b: 7 S1a: A S1a: A S4b: 7 S1b: 7 S1b: 7 S1b: 7 S1b: 7	fish is hunting for a turtle in the sea he turtle is following the red fish he turtle is following the fish he turtle is following the fish sea turtle is hunting for fish he fish is following the turtle he turtle is following the fish he turtle is following the fish fish is hunting for a turtle in the sea	S1a: A sea turtle is huntin S1b: The turtle is followin S3b: The turtle is followin S3b: The turtle is following S2b: The turtle is following S3b: The turtle is followin S1a: A sea turtle is huntin S2a: A sea turtle is huntin S3a: A sea turtle is not hu S1b: The turtle is followin	ag for fish 3. ag for fish 3. ag the fish 4. wing the fish 4. the turtle 3. ag the red fish 4. wing the fish 3. ag for fish 3. ag for fish 3. ag for food 3. anting for fish 3. ag the fish 3.	.4 .9 .4 .8 .4 .2 .2 .9 .4 .5	C N C C N N N N N N

Lasha Abzianidze & Reinhard Muskens

A Natural Proof System for Natural Language

3/28

NLI datasets	Learning phase		Demo	Conclusion	References
00000					
SICK AVA	mples and st	ate			

SICK-1241 GOLD: neutral A woman is dancing and singing with other women A woman is dancing and singing in the rain

SICK-341 GOLD: contradiction There is no girl with a black bag on a crowded train A girl with a black bag is on a crowded train

SICK-8381 GOLD: entailment The young girl in blue is having fun on a slide

The young girl in blue is enjoying a slide

Relatedness	neutral	contradiction	entailment	Total
[1,2) range	10%	0%	0%	10% (923)
[2,3) range	13%	1%	0%	14% (1373)
[3,4) range	28%	10%	1%	29% (3872)
[4,5] range	7%	3%	27%	37% (3672)
Total	56.86% (5595)	14.47% (1424)	28.67% (2821)	9840

NLI datasets ○○○●○	Learning phase	Evaluation 0000000	Demo ○	Conclusion	References
The FraCaS	S dataset				

The FraCaS test suite [Cooper et al., 1996] was an early attempt to creating a semantic benchmark for NLP systems.

- Contains 346 problems, 45% of which are multi-premised.
- Covers GQs, plurals, anaphora, ellipsis, adjectives, comparatives, temporal reference, verbs and attitudes.
- Three-way annotated by the authors of the dataset.
- Contains some ambiguous sentences and a few erroneous problems.
- Requires almost no lexical or world knowledge

(ロ) (同) (三) (三)

NLI datasets 000●0	Learning phase	Evaluation	Demo ☉	Conclusion	
The FraCaS	6 dataset				

The FraCaS test suite [Cooper et al., 1996] was an early attempt to creating a semantic benchmark for NLP systems.

- Contains 346 problems, 45% of which are multi-premised.
- Covers GQs, plurals, anaphora, ellipsis, adjectives, comparatives, temporal reference, verbs and attitudes.
- Three-way annotated by the authors of the dataset.
- Contains some ambiguous sentences and a few erroneous problems.
- Requires almost no lexical or world knowledge

Later, the FraCaS question-answer pairs where converted into an NLI format [MacCartney and Manning, 2007].

(日)

NLI datasets 0000●	Learning phase	Evaluation 0000000	Demo ○	Conclusion	References
FraCaS NL	I problems				

FraCaS-26GOLD: entailmentMost Europeans are resident in EuropeAll Europeans are peopleAll people who are resident in Europe can travel freely within EuropeMost Europeans can travel freely within Europe

FraCaS-61 GOLD: undefined Both female commissioners used to be in business.

Both commissioners used to be in business.

FraCaS-171

GOLD: entailment

John wants to know how many men work part time.

And women.

John wants to know how many women work part time.

FraCaS-87

GOLD: entailment

Every representative and client was at the meeting.

Every representative was at the meeting.

・ロト ・ 同ト ・ ヨト ・ ヨト

NLI datasets	Learning phase ●೦೦೦೦೦೦	Evaluation	Demo ○	Conclusion	
Learning p	ohase				

The prover LangPro is (semi-automatically) trained on the NLI datasets [Abzianidze, 2016a].

• Adaptation:

Used datasets: SICK-trial and FraCaS

• Development:

Finding optimal values for certain parameters of the prover based on its performance on SICK-train.

NB: Only C&C parser is used in the learning phase in order to test LangPro for an unseen parser, EasyCCG, later.

NLI datasets	Learning phase ○●○○○○○	Evaluation 0000000	Demo ○	Conclusion	References
Adaptatic	on: negative o	cases			

We avoid fitting to the data and adopting unsound and non-general solutions.

The problems that were not solved during the adaptation:

- Sentence is not recognised as of category *S* or failed to be parsed
- The error is analysis is too specific to fix:

At	most	ten	commissioners	spend	time	at	home
(S/S)/NP	N/N	N/N	Ν	(VP/PP)/NP	N	PP/NP	N

• Lexical relation is context dependent:

SICK-4505GOLD: entailmentThe doctors are healing a manThe doctor is helping the patient

SICK-384 GOLD: entailment

A white and tan dog is running through the tall and green grass A white and tan dog is running through a field

NLI datasets	Learning phase 00●0000	Evaluation 0000000	Demo ○	Conclusion	References
Adaptatio	on: positive c	ases			

The problems that were solved by upgrading one of the components of the prover:

• Treat **few** as \downarrow in its 1st arg (*absolute* reading):

FraCaS-76GOLD: entailmentFew committee members are from southern EuropeFew female committee members are from southern Europe

• Introduce $fit \sqsubseteq apply$ and $food \sqsubseteq meal$:

SICK-4734 GOLD: entailment A man is fitting a silencer to a pistol A man is applying a silencer to a gun

SICK-5110 GOLD: entailment A chef is preparing some food A chef is preparing a meal

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

NLI datasets	Learning phase 000●000	Evaluation	Demo ○	Conclusion	References
Developm	ent phase				

Optimal values of the following parameters are searched:

- The number of word senses to consider at the same time;
- The upper bound for the number of rule applications;
- Whether to use a term aligner:
 - Weak aligner aligns everything but terms of type np:

SICK-1022 GOLD: contradiction

A woman is wearing sunglasses of large size and is holding newspapers in both hands

There is no woman wearing sunglasses of large size and holding newspapers in both hand

SICK-727 GOLD: contradiction

The man in a grey t-shirt is sitting on a rock in front of the waterfall

There is no man in a grey t-shirt sitting on a rock in front of the waterfall

• Strong aligner aligns everything but terms of type terms of type np with larg.

SICK-423 GOLD: contradiction Two men are not holding fishing poles Two men are holding fishing poles

• Efficiency criterion of tableau rules.

NLI datasets	Learning phase 0000●00	Evaluation	Demo ○	Conclusion	
Efficiency	criterion				

- Non-branching or branching (so called, α or β rules);
- Semantic equivalence vs proper entailment;
- Consuming (so called, γ rule) vs non-consuming;
- Producing (so called, δ rule) vs non-producing.

・ロト ・ 同ト ・ ヨト ・ ヨト

NLI datasets	Learning phase oooo●oo	Evaluation	Demo ○	Conclusion	
Efficiency of	criterion				

- Non-branching or branching (so called, α or β rules);
- Semantic equivalence vs proper entailment;
- Consuming (so called, γ rule) vs non-consuming;
- Producing (so called, δ rule) vs non-producing.

An example of an efficiency criterion:

 $EC = \langle nonBr, semEqui, nonConsum, nonProd \rangle$

・ロト ・ 同ト ・ ヨト ・ ヨト

NLI datasets	Learning phase 0000●00	Evaluation	Demo ○	Conclusion	
Efficiency	criterion				

- Non-branching or branching (so called, α or β rules);
- Semantic equivalence vs proper entailment;
- Consuming (so called, γ rule) vs non-consuming;
- Producing (so called, δ rule) vs non-producing.

An example of an efficiency criterion:

 $EC = \langle nonBr, semEqui, nonConsum, nonProd \rangle$ An efficiency vectors based on the EC efficiency criterion:

- $V_{EC}(\wedge_{\mathbb{T}}) = 1111$
- $V_{EC}(v_T) = 0111$
- $V_{EC}(\exists_{\mathbb{T}}) = 1110$
- $V_{EC}(\exists_{\mathbb{F}}) = 0001$

(D) (A) (A) (A)

NLI datasets	Learning phase 0000●00	Evaluation	Demo ○	Conclusion	
Efficiency	criterion				

- Non-branching or branching (so called, α or β rules);
- Semantic equivalence vs proper entailment;
- Consuming (so called, γ rule) vs non-consuming;
- Producing (so called, δ rule) vs non-producing.

An example of an efficiency criterion:

 $EC = \langle nonBr, semEqui, nonConsum, nonProd \rangle$ An efficiency vectors based on the EC efficiency criterion:

- $V_{EC}(\wedge_{\mathbb{T}}) = 1111$
- $V_{EC}(v_T) = 0111$
- $V_{EC}(\exists_{\mathbb{T}}) = 1110$
- $V_{EC}(\exists_{\mathbb{F}}) = 0001$

What is the optimal efficiency criterion?

NLI datasets	Learning phase ooooo●o	Evaluation	Demo ○	Conclusion	
C I		1			

Greedy search for optimal parameters

Acc%	Prec%	Rec%	Sense	Efficiency criterion	Aligner	RAL	Parser
75.09	98.5	43.6	1	[nonP,nonB,equi,nonC]	No	200	C&C
76.42	98.3	46.8	1-5	-	-	-	-
76.89	97.8	48.1	All	-	-	-	-
78.44	97.9	51.7	-	[equi,nonB,nonP,nonC]	-	-	-
79.33	97.9	53.8	-	-	Weak	-	-
81.5	97.7	59.0	-	-	Strong	-	-
81.53	97.7	59.1	-	-	Strong	400	-
81.38	98.0	58.5	-	-	Strong	400	EasyCCG
82.6	97.7	61.6	-	-	Strong	400	Both

The results are given on the SICK-train problems.

イロト イヨト イヨト イヨト

E

NLI datasets	Learning phase	Learning phase Evaluation	Demo	Conclusion	References	
	0000000					
C I	1 0	1				

Greedy search for optimal parameters

Acc%	Prec%	Rec%	Sense	Efficiency criterion	Aligner	RAL	Parser
75.09	98.5	43.6	1	[nonP,nonB,equi,nonC]	No	200	C&C
76.42	98.3	46.8	1-5	-	-	-	-
76.89	97.8	48.1	All	-	-	-	-
78.44	97.9	51.7	-	[equi,nonB,nonP,nonC]	-	-	-
79.33	97.9	53.8	-	-	Weak	-	-
81.5	97.7	59.0	-	-	Strong	-	-
81.53	97.7	59.1	-	-	Strong	400	-
81.38	98.0	58.5	-	-	Strong	400	EasyCCG
82.6	97.7	61.6	-	-	Strong	400	Both

The results are given on the SICK-train problems.

FraCaS-21 GOLD: entailment

The residents of member states have the right to live in Europe

All residents of member states are individuals

Every individual who has the right to live in Europe can travel freely within Europe

The residents of member states can travel freely within Europe

NLI datasets	Learning phase oooooo●	Evaluation	Demo ○	Conclusion	
Efficient a	nd optimal r	ule applica	tion nun	nbers	

The results are given on the SICK-train problems.

A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A

NLI datasets	Learning phase	Evaluation ●○○○○○○	Demo ○	Conclusion	
Solving F	raCaS [Abzian				

LangPro with C&C										
Gold\ccLP	yes	no	unk							
yes	51	0	19 + 4							
no	1	14	2							
unk	1	0	44 + 6							
P = .97, R = .71, Acc = .81										

Gold\easyLP	yes	no	unk								
yes	52	0	22								
no	1	12	4								
unk	2	0	49								
P = .96, R =	P = .96, $R = .70$, $Acc = .80$										

(日) (部) (E) (E) (E)

Lang Pro with Easy CCC

NLI datasets	Learning phase	Evaluation ●000000	Demo ○	Conclusion	References
Solving F	raCaS [Abziar				

イロト イヨト イヨト イヨト

	LangPro													
	Gold\ LP	yes	no	unk										
_	yes	60	0	14										
_	no	1	14	2										
	unk	2	0	49										
	P = .96, R = .81, Acc = .87													

NLI datasets	Learning phase	Evaluation ●000000	Demo ○	Conclusion	References
Solving F	raCaS [Abzian				

		Lang	Pro	
	Gold \ LP	yes	no	unk
=	yes	60	0	14
	no	1	14	2
	unk	2	0	49
	P = .96, I	ع. = ۲	81, Ad	c = .87

FraCaS-109GOLD: contradictionLP: entailmentJust one accountant attended the meetingSome accountants attended the meeting

NLI datasets	Learning phase	Evaluation ○●○○○○○	Demo ○	Conclusion	References
Related wo	ork (FraCaS)				

[MacCartney and Manning, 2008] and [Angeli and Manning, 2014] employ a natural logic that is driven by sentence edits.

[Lewis and Steedman, 2013] employ Boxer-style [Bos et al., 2004] translation into FOL, Prover9 and distributional relation clustering.

[Mineshima et al., 2015] also uses the Boxer-style translation but some HOGQs are treated as higher-order terms. Their inference system is implemented in the proof assistant Coq.

[Tian et al., 2014] and [Dong et al., 2014] uses abstract denotations obtained from DCS trees [Liang et al., 2011]: $man \subset \pi_{subj} (read \cap (W_{subj} \times book_{obj}))$

[Bernardy and Chatzikyriakidis, 2017] uses Grammatical Framework and Coq. They use gold standard GF trees.

NLI datasets	Learning phase	Evaluation 00●0000	Demo ○	Conclusion	
Comparisor	n on FraCaS				

Sec (S	ing/All)		Single-premised (Acc %)								Overall (Acc %)							
See (Sing/Air)		BL	NLO	7,08	LS F	P/G	NLI	T14	la,b	M15	LΡ	BL	LS	P/G	T14	la,b	M15	LΡ
1 GQs	(44/74)	45	84	98	70	89	95	80	93	82	93	50	62	85	80	95	78	95
2 Plur	(24/33)	58	42	75	-		38		-	67	75	61		-	.	•	67	73
5 Adj	(15/22)	40	60	80	-		87	.	-	87	87	41		-	-		68	77
9 Att	(9/13)	67	56	89	-		22	-	-	78	100	62		-	-	-	77	92
1,2,5,9	(92/142)	50	-	88	-		-		-	78	88	52		-	-		74	87

NL07 [MacCartney and Manning, 2007], NL08 [MacCartney and Manning, 2008], NLI [Angeli and Manning, 2014], LS [Lewis and Steedman, 2013],

M15 [Mineshima et al., 2015], T14a [Tian et al., 2014] and T14b [Dong et al., 2014]

・ロト ・聞ト ・ヨト ・ヨト

NLI datasets 00000	Learning phase	Evaluation 00●0000	Demo ○	Conclusion	References
Comparisor	n on FraCaS				

Sec (S	ing/All)		Single-premised (Acc %)								Overall (Acc %)				
		BL	NLO	7,08	LS P/G	NLI	T14a,b	M15	LP	BL	LS P/G	T14a,b	M15	LΡ	
1 GQs	(44/74)	45	84	98	70 89	95	80 93	82	93	50	62 85	80 95	78	95	
2 Plur	(24/33)	58	42	75	-	38	-	67	75	61	-	-	67	73	
5 Adj	(15/22)	40	60	80	-	87	-	87	87	41	-	-	68	77	
9 Att	(9/13)	67	56	89	-	22	-	78	100	62	-	-	77	92	
1,2,5,9	(92/142)	50	-	88	-	-	-	78	88	52	-	-	74	87	

NL07 [MacCartney and Manning, 2007], NL08 [MacCartney and Manning, 2008], NLI [Angeli and Manning, 2014], LS [Lewis and Steedman, 2013],

M15 [Mineshima et al., 2015], T14a [Tian et al., 2014] and T14b [Dong et al., 2014]

Advantages of our approach over the related ones include:

- Reasoning (with the semantic tableau) over multiple-premises;
- Logical forms close to surface forms;
- Underlying expressive high-order logic.

NLI datasets 00000	Learning phase	Evaluation	Demo ○	Conclusion	
Curing SI	CK [Abzianidz				

LangPro Gold SICK-test	Ent	Cont	Neut
Entailment	805	0	609
Contradiction	2	482	236
Neutral	26	7	2760

P=97.4%, R=60.3%, Acc=82.14%

イロト イポト イヨト イヨト

æ

NLI datasets	Learning phase	Evaluation 000●000	Demo ○	Conclusion	
Curing SIC	CK [Abzianidz				

LangPro Gold SICK-test	Ent	Cont	Neut
Entailment	805	0	609
Contradiction	2	482	236
Neutral	26	7	2760

P=97.4%, R=60.3%, Acc=82.14%

Mainly the usage of WordNet and noisy gold labels are blamed for false proofs.

ID G/LP	Premise	Conclusion	
1405 N/E	A prawn is being cut by a woman	A woman is cutting shrimps	
4443 N/E	A man is singing to a girl	A man is singing to a woman	
2870 N/C	Two people are riding a motorcycle	Nobody is riding a bike	
8913 N/C	A couple is not looking at a map	A couple is looking at a map	
262 010	P: A soccer ball is not rolling into a goal net		
303 C/C	C: A soccer ball is rolling into a goal net		

NLI datasets	Learning phase	Evaluation 0000●00	Demo ○	Conclusion	
False neutr	als				

Reason for false neutrals are knowledge sparsity (ca 50%), a lack of rules (ca 25%), wrong labels and parsing mistakes.

ID G/LP	Premise	Conclusion		
4974 E/N	Someone is holding a hedgehog	Someone is holding a small animal		
6258 E /N	P: A policeman is sitting on a moto	rcycle		
0250 L/1	C: The cop is sitting on a police bike			
1553 E /N	P: A man is emptying a container made of plastic			
4555 E/1	C: A man is emptying a plastic container			
4720 E/N	A monkey is practicing martial arts	A chimp is practicing martial arts		
6447 C /N	P: [A small boy [in a yellow shirt]] is	laughing on the beach		
0447 C/N	C: There is no small boy [in a yellow shirt [laughing on the beach]]			

NLI datasets 00000	Learning phase	Evaluation 00000●0	Demo ○	Conclusion	
Comparisor	n on SICK				

SemEval-14 systems	Prec%	Rec%	Acc%	(+LP)	NWS%
Baseline (majority)	-	-	56.69		39.7
Illinois-LH	81.56	81.87	84.57	(+0.65)	72.8
ECNU	84.37	74.37	83.64	(+1.77)	72.7
UNAL-NLP	81.99	76.80	83.05	(+1.48)	71.2
SemantiKLUE	85.40	69.63	82.32	(+2.84)	71.5
The Meaning Factory	93.63	60.64	81.59	(+2.78)	73.0
UTexas (Prob-FOL)	97.87	38.71	73.23	(+9.44)	62.5
LangPro	97.35	60.31	82.14		74.8

RTE systems	Acc%
Prob-FOL	76.52
$Prob\operatorname{-}FOL^* + Rules$	85.10
Nutcracker+PPDB	79.60
ABCNN-3	86.20
LSTM RNN+SNLI	80.80

Gold\System	E	С	Ν
Entailment	2	-2	0
Contradiction	-2	2	0
Neutral	$^{-1}$	-1	1

(日) (部) (E) (E) (E)

NLI datasets	Learning phase	Evaluation 000000●	Demo ○	Conclusion	
''Hard''	problems				

The problems from SICK-test that were proved correctly by both ccLangPro and easyLangPro but failed by all the top five systems at the SemEval-14 task.

ID	G	Text Hypothesis				
247	C	T: The woman is not wearing glasses or a headdress				
247		H: A woman is wearing an Egyptian he	eaddress			
106	T: A group of scouts are hiking through the grass					
400		H: People are walking				
2895	С	The man isn't lifting weights	The man is lifting barbells			
2527	E	T: A person is jotting something with	a pencil			
5521		H: A person is writing				
3570	C	The piece of paper is not being cut	Paper is being cut with scissors			
2600	м	T: A monkey is riding a bike				
3000		H: A bike is being ridden over a monkey				
3806	E	A man in a hat is playing a harp	A man is playing an instrument			
4479	Е	The boy is playing the piano	The boy is playing a musical instrument			

・ 同 ト ・ ヨ ト ・ ヨ ト

NLI datasets	Learning phase	Evaluation	Demo ●	Conclusion	
Introducing	g a new tabl	eau rule			

Let us add a new rule to Natural Tableau and LangPro:

We want introduce a rule in order to account for the entailment:

GOLD: entailment Most women are working Most women are rich There is a woman who is working and is rich

NLI datasets	Learning phase	Evaluation	Demo ●	Conclusion	
Introducing	g a new tab	leau rule			

Let us add a new rule to Natural Tableau and LangPro:

We want introduce a rule in order to account for the entailment:

GOLD: entailment Most women are working Most women are rich There is a woman who is working and is rich

This rule will help:

$$\begin{array}{c} \begin{array}{c} \text{MOST2} \\ [\overrightarrow{M}_1]: \text{most } N_n \ W_{\text{vp}}: []: \mathbb{T} \\ [\overrightarrow{M}_2]: \text{most } N_n \ R_{\text{vp}}: []: \mathbb{T} \\ \end{array} \\ \begin{array}{c} N_n: [c_e]: \mathbb{T} \\ [\overrightarrow{M}_1]: W_{\text{vp}}: [c_e]: \mathbb{T} \\ [\overrightarrow{M}_2]: R_{\text{vp}}: [c_e]: \mathbb{T} \\ \end{array} \\ \end{array}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

NLI datasets	Learning phase	Evaluation	Demo ○	Conclusion ●○○○	
Conclusion					

Natural Tableau is a wide-coverage but still logic-based reasoning system inspired by Natural Logic.

It represents a proof-theoretic approach to NLI.

Natural tableau was successfully scaled up for the NLI task: CCG parser + LLFgen + theorem prover

・ロト ・ 同ト ・ ヨト ・ ヨト

NLI datasets	Learning phase	Evaluation	Demo ○	Conclusion ●○○○	
Conclusion					

Natural Tableau is a wide-coverage but still logic-based reasoning system inspired by Natural Logic.

It represents a proof-theoretic approach to NLI.

Natural tableau was successfully scaled up for the NLI task: CCG parser + LLFgen + theorem prover

Pros and cons of Natural Tableau:

- Employs higher-order logic to model linguistic semantics;
- ✓ Allows deep logical and shallow (e.g. monotonicity) reasoning;
- Getting logical form is similar to syntactic parsing;
- Heavily hinges on CCG parsing;
- ✓ Proofs are highly reliable ($\leq 3\%$ false proofs);
- X Suffers from multi-sense words;
- ✗ No fully automated learning from data yet;
- ✓ Its decision procedure is transparent and explanatory;

NLI datasets 00000	Learning phase	Evaluation	Demo ○	Conclusion ○●○○	
Future wor	k				

There are really many directions for future work:

- Explore different types of RTE data, e.g., the newswire or human generated data [Bowman et al., 2015];
- Incorporate more knowledge in KB, e.g., paraphrase database [Ganitkevitch et al., 2013].
- Model different phenomena: comparatives, anaphora, cardinals, etc.
- Pairing with distributional semantics: $R(w_1, w_2, r)$ and weighted closure branches;
- Acquisition of lexical knowledge: abductive reasoning;
- Generate LLFs from Universal Dependency trees

+ the Universal Semantic Tagging [?]

 $\rightarrow^{?}$ Multilingual Natural Tableau

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

イロト イポト イヨト イヨト

NLI datasets	Learning phase	Evaluation	Demo ○	Conclusion ○○○●	
Thank you					

Thank you for coming here in the early mornings and listening me repeating tableau, tableau, tableau, ..., tableau!

NLI datasets	Learning phase	Evaluation	Demo ○	Conclusion	References ●●●
References	1				

Abzianidze, L. (2015). A tableau prover for natural logic and language. In *Proceedings of the* 2015 Conference on Empirical Methods in Natural Language Processing, pages 2492–2502, Lisbon, Portugal. Association for Computational Linguistics.

Abzianidze, L. (2016a). A natural proof system for natural language. PhD thesis, Tilburg University.

Abzianidze, L. (2016b). Natural solution to fracas entailment problems. In *Proceedings of the Fifth Joint Conference on Lexical and Computational Semantics*, pages 64–74, Berlin, Germany. Association for Computational Linguistics.

Angeli, G. and Manning, C. D. (2014). Naturalli: Natural logic inference for common sense reasoning. In *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)*.

Bernardy, J.-P. and Chatzikyriakidis, S. (2017). A type-theoretical system for the FraCaS test suite: Grammatical framework meets coq. In *IWCS* 2017 - 12th International Conference on Computational Semantics - Long papers.

Bos, J., Clark, S., Steedman, M., Curran, J. R., and Hockenmaier, J. (2004). Wide-coverage semantic representations from a ccg parser. In *Proceedings of the 20th International Conference on Computational Linguistics (COLING '04)*, pages 1240–1246, Geneva, Switzerland.

Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D. (2015). A large annotated corpus for learning natural language inference. In *Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing*, pages 632–642, Lisbon, Portugal. Association for Computational Linguistics.

イロト イポト イヨト イヨト

NLI datasets	Learning phase	Evaluation 0000000	Demo ○	Conclusion	References ●●●
Reference	s II				

Cooper, R., Crouch, D., Eijck, J. V., Fox, C., Genabith, J. V., Jaspars, J., Kamp, H., Milward, D., Pinkal, M., Poesio, M., Pulman, S., Briscoe, T., Maier, H., and Konrad, K. (1996). *FraCaS: A Framework for Computational Semantics.* Deliverable D16.

Dong, Y., Tian, R., and Miyao, Y. (2014). Encoding generalized quantifiers in dependency-based compositional semantics. In *Proceedings of the 28th Pacific Asia Conference on Language, Information, and Computation*, pages 585–594, Phuket, Thailand. Department of Linguistics, Chulalongkorn University.

Ganitkevitch, J., Van Durme, B., and Callison-Burch, C. (2013). PPDB: The paraphrase database. In *Proceedings of NAACL-HLT*, pages 758–764, Atlanta, Georgia. Association for Computational Linguistics.

Lai, A. and Hockenmaier, J. (2014). Illinois-Ih: A denotational and distributional approach to

semantics. In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pages 329–334, Dublin, Ireland. Association for Computational Linguistics and Dublin City University.

Lewis, M. and Steedman, M. (2013). Combined distributional and logical semantics. *Transactions* of the Association for Computational Linguistics (TACL), 1:179–192.

Liang, P., Jordan, M. I., and Klein, D. (2011). Learning dependency-based compositional semantics. In Association for Computational Linguistics (ACL), pages 590–599.

MacCartney, B. and Manning, C. D. (2007). Natural logic for textual inference. In Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, RTE '07, pages 193–200, Stroudsburg, PA, USA. Association for Computational Linguistics.

NLI datasets	Learning phase	Evaluation 0000000	Demo ○	Conclusion	References ●●●
Reference	~s				

MacCartney, B. and Manning, C. D. (2008). Modeling semantic containment and exclusion in natural language inference. In Scott, D. and Uszkoreit, H., editors, *COLING*, pages 521–528.

Marelli, M., Menini, S., Baroni, M., Bentivogli, L., Bernardi, R., and Zamparelli, R. (2014a). Semeval-2014 task 1: Evaluation of compositional distributional semantic models on full sentences through semantic relatedness and textual entailment. In *Proceedings of SemEval 2014* (International Workshop on Semantic Evaluation), pages 1–8, East Stroudsburg PA. ACL.

Marelli, M., Menini, S., Baroni, M., Bentivogli, L., Bernardi, R., and Zamparelli, R. (2014b). A sick cure for the evaluation of compositional distributional semantic models. In Calzolari, N., Choukri, K., Declerck, T., Loftsson, H., Maegaard, B., Mariani, J., Moreno, A., Odijk, J., and Piperidis, S., editors, *Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)*, Reykjavik, Iceland. European Language Resources Association (ELRA).

Mineshima, K., Martínez-Gómez, P., Miyao, Y., and Bekki, D. (2015). Higher-order logical inference with compositional semantics. In *Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing*, pages 2055–2061, Lisbon, Portugal. Association for Computational Linguistics.

Tian, R., Miyao, Y., and Matsuzaki, T. (2014). Logical inference on dependency-based

compositional semantics. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 79–89, Baltimore, Maryland. Association for Computational Linguistics.

イロト イポト イヨト イヨト