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Course is about

The following research questions are at the heart of the course:

How are the meanings of natural language sentences related to
each other?

How to systematically reason with natural language sentences?

How to get an explainable reasoning system?

Can I use expressive but at the same time friendly meaning
representations?

There will be many natural trees
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Course is NOT about

Machine leaning (and Artificial Neural Networks)

Lexicalized formal compositional semantics:
[[John]]@([[loves]]@[[Mary]]) = love(john,mary)

Only toy examples

Proving theorems about formal logics
(but proving natural language theorems)
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A few prerequisites

Syntax of first-order logic formulas

Understanding semantics of first-order logic formulas:
∃y∀x.love(x,y) →∀x∃y.love(x,y)

Some knowledge of λ-calculus

Some knowledge of simply typed λ-calculus
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Outcome of the course

In the end of the course you will know about:

Challenges posed by Natural Language Inference

Pros & Cons of logic-based methods wrt NLI

Nitty-gritty details of theorem proving with a tableau system

Doing semantics with higher-order logic

How to account for a semantic phenomena in Natural Tableau

How to use the Natural Tableau prover to solving inference
problems
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Course in a nutshell
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Topics per day

Mon Natural Language Inference
The task of NLI, monotonicity reasoning & natural logic (pros &
cons)

Tue Semantic Tableau Method
Tableau systems for Propositional, First- and Higher-Order Logics

Wed Natural Tableau System
Lambda Logical Forms, Natural Tableau & tableau rules (part 1)

Thu Wide-Coverage Theorem Prover for Natural Language
Producing logical forms from syntactic trees, tableau rules (part 2)

Fri Natural Language Inference with Natural Theorem Prover
Solving problems from NLI datasets, evaluation and analysis

Course web page: naturallogic.pro/Teaching/esslli19/

Lasha Abzianidze & Reinhard Muskens NPS4NL-1: Natural Language Inference 7 / 34
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Natural Language Understanding

Natural language understanding is one of the main problems of AI and
NLP.

How to test whether a machine/program understands a natural
language?

Lasha Abzianidze & Reinhard Muskens NPS4NL-1: Natural Language Inference 8 / 34

estimate semantic competence in a natural language
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Natural Language Understanding

Natural language understanding is one of the main problems of AI and
NLP.

How to test whether a machine/program understands a natural
language?

Use the Turing test.

oToo expensive! , , ,
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Natural Language Understanding

Natural language understanding is one of the main problems of AI and
NLP.

How to test whether a machine/program understands a natural
language?

Given a sentence, ask what does it mean/tell.
A brown cat is lying on a mat

A1: A pet, which is brown, is lying
A2: A cat is on a mat
A3: There is an animal sleeping on a mat

...

oEvaluation of the answers requires a system that understands natural
language. , ,
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Natural Language Understanding

Natural language understanding is one of the main problems of AI and
NLP.

How to test whether a machine/program understands a natural
language?

Given a sentence, ask a yes/no/dunno question about its meaning.
A brown cat is lying on a yellow mat

Q1: Is the brown cat lying on the mat? [Yes]
Q2: Is the mat soft? [Dunno]
Q3: Is the cat jumping on the mat? [No]

...

oThis focuses on (long) questions and declarative sentences, and it is
not straightforward to cover noun phrases and imperatives? ,

A cat on the mat Feed the cat on the mat!

Lasha Abzianidze & Reinhard Muskens NPS4NL-1: Natural Language Inference 8 / 34

estimate semantic competence in a natural language

https://www.publicdomainpictures.net

https://www.publicdomainpictures.net


Introduction Natural language inference Monotonicity & Natural logic Conclusion

Natural Language Understanding

Natural language understanding is one of the main problems of AI and
NLP.

How to test whether a machine/program understands a natural
language?

Given a sentence, ask a yes/no/dunno question about its meaning.
A brown cat is lying on a yellow mat

Q1: Is the brown cat lying on the mat? [Yes]
Q2: Is the mat soft? [Dunno]
Q3: Is the cat jumping on the mat? [No]

...
oThis focuses on (long) questions and declarative sentences, and it is
not straightforward to cover noun phrases and imperatives? ,

A cat on the mat Feed the cat on the mat!
Lasha Abzianidze & Reinhard Muskens NPS4NL-1: Natural Language Inference 8 / 34

estimate semantic competence in a natural language

https://www.publicdomainpictures.net

https://www.publicdomainpictures.net


Introduction Natural language inference Monotonicity & Natural logic Conclusion

Natural Language Understanding

Natural language understanding is one of the main problems of AI and
NLP.

How to test whether a machine/program understands a natural
language?

Given two sentences S1 and S2, detect whether S1 entails S2.
S1: A brown cat is lying on a yellow mat
S2: There is an animal on a yellow-colored mat

Answer: Yes
S1: The cat lying on a mat
S2: The cat rolling on a yellow mat

Answer: No

-- Contrasting phrases of the same category, e.g., noun phrase,
declarative sentences, questions, etc. ,
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Recognizing Textual Entailment (2005-2013)

The task of Recognizing Textual Entailment (RTE) was introduced by
[Dagan et al., 2005]:

Textual entailment is defined as a directional relationship between
pairs of text expressions, denoted by T (the entailing “Tex”) and H
(the entailed “Hypothesis”). We say that T entails H if humans
reading T would typically infer that H is most likely true.

An RTE task: given two texts, T (text) and H (hypothesis), detect
textual entailment from T to H.
The RTE1 to RTE3 challenges: binary classification
The RTE4 to RTE8 challenges: 3-way classification with long texts

Lasha Abzianidze & Reinhard Muskens NPS4NL-1: Natural Language Inference 9 / 34
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RTE problems

RTE2 GOLD: non−entailment
Drew Walker, NHS Tayside’s public health director, said:

“It is important to stress that this is not a confirmed case of rabies.”
A case of rabies was confirmed

RTE2 GOLD: entailment
About two weeks before the trial started, I was in Shapiro’s office

in Century City
Shapiro works in Century City

RTE2 GOLD: entailment
The drugs that slow down or halt Alzheimer’s disease work best

the earlier you administer them
Alzheimer’s disease is treated using drugs

Lasha Abzianidze & Reinhard Muskens NPS4NL-1: Natural Language Inference 10 / 34
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Long before RTE: Aristotle’s syllogisms

Aristotle’s syllogisms (4th century BC):
256 RTE problems
Text consists of two sentences
24(!) of the problems are entailment

OAO-3 GOLD: entailment
Some cats have no tails
All cats are mammals
Some mammals have no tails

IAE-3 GOLD: contradiction
Some dogs have spots
All dogs are mammals
No mammals have spots

IAA-1 GOLD: neutral
Some vehicles are electric
All cars are vehicles
All cars are electric

AAI-1 GOLD: neutral
All canids are mammals
All cupacabras are canids
Some cupacabras are mammals

Lasha Abzianidze & Reinhard Muskens NPS4NL-1: Natural Language Inference 11 / 34
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Just before RTE: FraCaS

The FraCaS test suite [Cooper et al., 1996]:
346 problems: a set of premises and a yes/no/dunno question
Around half of the problems have multiple premises
The problems are grouped based on the semantic phenomena:
generalized quantifiers, plurals, ellipsis, adjectives, . . .

FraCaS-26 GOLD: yes
Most Europeans are resident in Europe
All Europeans are people
All people who are resident in Europe can travel freely within Europe
Can most Europeans travel freely within Europe?

FraCaS-38 GOLD: unknown
No delegate finished the report.
Did any delegate finish the report on time?

Lasha Abzianidze & Reinhard Muskens NPS4NL-1: Natural Language Inference 12 / 34
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After RTE: Natural Language Inference

Natural Language Inference is a recent term for Recognizing Textual
Entailment.
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After RTE: Natural Language Inference

Natural Language Inference is a recent term for Recognizing Textual
Entailment.
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Modern NLI

The Stanford NLI (SNLI) corpus [Bowman et al., 2015]:
Large corpus: 570K premise-hypothesis pairs
Tackling entity & event co-reference by grounding in images
Premises are image captions and hypotheses are generated by
crowd workers
Premise-hypothesis pairs are annotated by 5 crowd workers with 3
labels

The Multi-Genre NLI (MultiNLI) corpus [Williams et al., 2018]:
Large corpus: 433K premise-hypothesis pairs
It is modeled on the SNLI corpus
10 genres: Fiction, Governmnet, Slate, Telephone, Travel, 9/11,. . .
Used as a sentence encoder benchmark at RepEval 2019

Lasha Abzianidze & Reinhard Muskens NPS4NL-1: Natural Language Inference 14 / 34
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Examples from SNLI∗

SNLI-3581451227.jpg#4r1c GOLD: contradiction1c

A little girl and boy after a wedding in a field
the sail boat sank in the ocean

SNLI-475816542.jpg#2r1c GOLD: contradiction3c2e

A black and a brown dog are running toward the camera.
A black and a brown cat are running toward the camera.

SNLI-4837051771.jpg#2r1n GOLD: neutral2e3n

A small ice cream stand with two people standing near it.
Two people in line to buy icecream.

SNLI-2218907190.jpg#1r1e GOLD: entailment2c3e

A dog begins to climb a brick staircase near plants.
A dog is going up the stairs.

∗Arguable examples
Lasha Abzianidze & Reinhard Muskens NPS4NL-1: Natural Language Inference 15 / 34
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Critical look at SNLI

In the test part of SNLI, 12.2% of problems get 2vs3 annotations.

Annotation artifacts inflate systems’ performance
[Poliak et al., 2018, Gururangan et al., 2018]:

Hypothesis only baselines score strikingly high wrt the majority
class baseline: 69.2% vs 33.8% accuracy

animal, outdoors, and person often in entailment hypotheses

tall, sad, and first often in neutral hypotheses

cat, sleeping, and no often in contradiction hypotheses

Lasha Abzianidze & Reinhard Muskens NPS4NL-1: Natural Language Inference 16 / 34
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Smart black boxes

Author performance on test-SNLI (91.4%) is already suppressed by a
deep neural network-based system (91.6%) [Liu et al., 2019]

+SNLI leaderboard

What does this mean?

Specially dedicated workshops:
BlackboxNLP 2018 and 2019

Harder challenges aka Task-Independent Sentence Understanding:

+GLUE leaderboard
+SuperGLUE leaderboard

Lasha Abzianidze & Reinhard Muskens NPS4NL-1: Natural Language Inference 17 / 34
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Explainable reasoning

Explainable reasoning is a feature associated with a white box systems:
Explain entailment by providing some sort of proof or argument
Explain contradiction by highlighting the incompatible cases
Explain neutral relation by providing counterexamples for
entailment and contradiction

e-SNLI – NLI with natural language explanations [Camburu et al., 2018]:
For each labelled NLI problem, crowd workers gave explanations;
Also the word relevant for explanations were highlighted;
An NLI system needs to predict a label and an explanation;
How to evaluate predicted explanation automatically?
BLEU-score is a poor metric for this purpose.

Lasha Abzianidze & Reinhard Muskens NPS4NL-1: Natural Language Inference 18 / 34
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Examples from e-SNLI

SNLI-3581451227.jpg#4r1c GOLD: contradiction1c

A little girl and boy after a wedding in a field
the sail boat sank in the ocean
A girl and boy are people, not a thing, as a sail boat is. You cannot
be in a field and in the ocean at the same time

SNLI-475816542.jpg#2r1c GOLD: contradiction3c2e

A black and a brown dog are running toward the camera.
A black and a brown cat are running toward the camera.
They refer to a dog, not a cat

The animal is either a cat or a dog

A dog cannot be a cat

Lasha Abzianidze & Reinhard Muskens NPS4NL-1: Natural Language Inference 19 / 34
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Examples from e-SNLI (II)

SNLI-4837051771.jpg#2r1n GOLD: neutral2e3n

A small ice cream stand with two people standing near it.
Two people in line to buy icecream.
Being near a stand doesn’t mean you have to buy anything
Just because two people are standing near an ice cream stand, doesn’t
mean they are in line to buy ice cream
People who are standing near an ice cream stand are not always in
line to buy ice cream

SNLI-2218907190.jpg#1r1e GOLD: entailment2c3e

A dog begins to climb a brick staircase near plants.
A dog is going up the stairs.
Brick staircase is a paraphrase of stairs, and going up means to climb

Climbing implies going up

A DOG IS CLIMBING UP THE STAIRS

Lasha Abzianidze & Reinhard Muskens NPS4NL-1: Natural Language Inference 20 / 34
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Shortcomings of NLI systems

Few NLI systems are able to reason over multiple premises.

Most NLI systems do not use logic-based reasoning: poor at
processing Booleans (e.g., or, not) and quantifiers (e.g., every, no).
P1: Most boxers have been knocked out
P2: All boxers are athletes
P3: All athletes who has been knocked out has a broken nose
C: Most boxers have a broken nose

SOTA NLI systems are not explanatory (though pretty good).

Most RTE systems can be fooled easily (i.e. not having high
precision)

SICK-1745 GOLD:: neutral
T: A man is pushing the buttons of a microwave
H: A man is being pushed toward the buttons of a microwave

Lasha Abzianidze & Reinhard Muskens NPS4NL-1: Natural Language Inference 21 / 34
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Shortcomings of logic-based NLI systems

Their logic is often not expressive enough to model some aspects of
linguistics semantics: higher-order terms like generalized quantifiers
(e.g., few, most) and subsective modifiers e.g. competent, slowly.

Translation of linguistic semantics into formal logic is usually a
complex and immense problem, e.g., NL text into first-order logic
[Bos, 2008].

After the translation, information about constituency and syntax is
not available in a formal language while the information is often
crucial for shallow reasoning, e.g., monotonicity reasoning.
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Introduction Natural language inference Monotonicity & Natural logic Conclusion

How logic can be natural?

Natural logic is a hypothetical logic which is built in natural language
and represents its integral part.

It is a theory about “the regularities governing the notion of a valid
argument for reasoning in natural language” [Lakoff, 1970].

“Natural logic is a somewhat loose [...] term for [...] attempts [...] at
describing basic patterns of human reasoning directly in natural
language without the intermediate of some formal system”
[van Benthem, 2008].

Natural logic is “the study of inference in natural language, done as
close as possible to the surface forms” [Moss, 2010b].
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Introduction Natural language inference Monotonicity & Natural logic Conclusion

Monotonicity reasoning

The most popular and success story of natural logic is monotonicity
reasoning.

Monotonicitity reasoning is about replacing phrases in a premise in such
a way that the obtained sentences are entailment of the premise.

GOLD: entailment
P: Every man who consumed alcohol devoured most snacks
H: Every young man who drank beer ate some snacks

GOLD: entailment
P: 3× [s3(x) = x+3](2) ≤ [p3(x) = x3]

(
[m4(x) = x (mod 4)](7)

)
H: 2× [s1(x) = x+1](1) ≤ [p4(x) = x4]

(
[m8(x) = x (mod 8)](7)

)

Do you see similarity between these two entailment pairs?
Now?
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NatLog in action

P: John refused to move without blue jeans
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Detect polarities of the words in the premise
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(S5) John didn’t dance without pants
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Sentence & Atomic edit Lexical Projected Overall

(S0) John refused to move without blue jeans
(E1) del(refused to) | | |

(S1) John moved without blue jeans
(E2) ins(didn’t) ˆ ˆ <

(S2) John didn’t moved without blue jeans
(E3) sub(move, dance) = < <

(S3) John didn’t dance without blue jeans
(E4) del(blue) < < <

(S4) John didn’t dance without jeans
(E5) sub(jeans, pants) < < <

(S5) John didn’t dance without pants

S0 | S1 1 S1ˆS2 1 S2<S3 1 S3<S4 1 S4<S5 = S0<S5
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Shortcomings of NatLog

Cannot account for paraphrases:

John bought a car from Bill
Bill sold a car to John

A student wrote an essay
An essay was written by a student

Weaker than first-order logic:

Not all bird fly
Some birds does not fly

The word-alignment and -substitution nature of reasoning falls
short of processing multiple premises
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Related work

Other works on monotonicity reasoning and natural logic:
First study of monotonicity reasoning as a formal calculus
[Van Benthem, 1986, van Benthem, 1987, Sánchez-Valencia, 1991]
Moving from syllogistic logics towards natural logic [Moss, 2010a]
A tableau proof system for a fragment of natural logic [Muskens, 2010]
Formal system for extended monotonicity reasoning
[MacCartney and Manning, 2008, Icard, 2012, Icard and Moss, 2014]

Working systems:
Monotonicity-based inference system for a fragment of English,
operating on categorical grammar derivation trees
[Fyodorov et al., 2003, Zamansky et al., 2006]
Implementation of syllogistic logic with monotonicity [Eijck, 2005]
Two implementations of extended syllogistic logics [Hemann et al., 2015]
Natural language inference using polarity-marked parse trees
[Hu et al., 2019]
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Conclusion

The RTE/NLI task can be seen “as the best way of testing an NLP
system’s semantic capacity” [Cooper et al., 1996].

The NLI task is popular: many benchmarks and datasets

NLI systems comes with many flavours but we focus on logic-based ones

Monotonicity reasoning, the signature of natural logic

Polarity marking
String edit and word replacement reasoning
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